
Sri Lankan Journal of Applied Statistics (Special Issue)
Modern Statistical Methodologies in the Cutting Edge of Science

Maximum Empirical Likelihood Estimation In A
Heteroscedastic Linear Regression Model With Possibly

Missing Responses
Anton Schick∗ and Yilin Zhu

Department of Mathematical Sciences, Binghamton University,
Binghamton, New York, USA

∗Corresponding Author: anton@math.binghamton.edu

Received: 4, September 2013 / Revised: 3, February 2014 / Accepted: 11, March 2014

ABSTRACT

A heteroscedastic linear regression model is considered where responses are
allowed to be missing at random and with the conditional variance modeled
as a function of the mean response. Maximum empirical likelihood estimation
is studied for an empirical likelihood with an increasing number of estimated
constraints. The resulting estimator is shown to be asymptotically normal and
can outperform the ordinary least squares estimator.

Keywords: Weighted least squares estimator, Missing at random, Estimated
constraints, Increasing number of constraints.

1. Introduction
Consider the heteroscedastic linear regression model in which the response
variable Y is linked to the q-dimensional covariate vector X by the formula

Y = θTZ + ε,

where Z is m(X) for a known measurable function m from Rq into Rp, θ is
an unknown vector in Rp, the error variable ε is conditionally centered, i.e.,
E[ε|X] = 0, and its conditional variance

σ2(X) = E[ε2|X]

is bounded and bounded away from zero. In order to identify the regression
parameter, it is assumed that the matrix

M = E[ZZ>]
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is well defined and positive definite. For q = 1, a possible choice of m is

m(x) = (1, x, x2, . . . , xp−1)>, x ∈ R,

which corresponds to polynomial regression. The case p = 2 yields the classi-
cal heteroscedastic simple linear regression model. For q = 2, a possible choice
of m is given by

m(x1, x2) = (1, x1, x2, x
2
1, x1x2, x

2
2)
>, x1, x2 ∈ R.

In the ideal situation one observes the pair (X,Y ). In real life data sets, how-
ever, one frequently encounters missing values. Here we allow the response
Y to be missing. Then one observes (δ,X, δY ) with δ an indicator random
variable. The interpretation is that for δ = 1 one observes the full pair (X,Y ),
while for δ = 0 one observes only the covariate X . We make the common
assumption that the response is missing at random. This means that the condi-
tional probability of δ = 1 given (X,Y ) depends on X alone,

P (δ = 1|X,Y ) = P (δ = 1|X).

Monographs on missing data are Little and Rubin (2002) and Tsiatis (2006).
We assume throughout that the conditional probability

π(X) = P (δ = 1|X)

is bounded away from zero. This implies that E[δ] is positive.

The data in our model are (δ1, X1, δ1Y1), . . . (δn, Xn, δnYn) which are inde-
pendent copies of the triple (δ,X, δY ). We set

Zj = m(Xj) and εj = Yj − θ>Zj , j = 1, . . . , n,

and let N = δ1 + · · · + δn denote the number of complete observations. A
possible estimator of θ is the least squares estimator θ̂L based on the complete
observations,

θ̂L = arg min
ϑ∈Rp

n∑
j=1

δj(Yj − ϑ>Zj)2.

If σ2 were known, we could use the weighted least squares estimator θ̂W to
estimate the regression parameter θ. This estimator minimizes the weighted
sum of squares

Q(ϑ) =
n∑
j=1

δj
(Yj − ϑ>Zj)2

σ2(Xj)
, ϑ ∈ Rp,
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and satisfies the stochastic expansion

θ̂W = θ +
1

n

n∑
j=1

H−1
δjεj

σ2(Xj)
Zj + oP (n−1/2) (1.1)

with

H = E
[ δε2

σ4(X)
ZZ>

]
= E

[ π(X)

σ2(X)
ZZ>

]
.

Note that H is invertible because M is invertible and π/σ2 is bounded and
bounded away from zero. Thus n1/2(θ̂W − θ) is asymptotically normal with
mean vector 0 and dispersion matrix H−1. Since we treat σ2 as unknown,
the weighted least squares estimator is no longer available. For this reason we
call θ̂W the oracle weighted least squares estimator. A natural approach is to
minimize instead of Q(ϑ) the weighted sum of squares

Q̂(ϑ) =
n∑
j=1

δj(Yj − ϑ>Zj)2

σ̂2(Xj)
, ϑ ∈ Rd,

in which an estimator σ̂2 replaces the unknown σ2. Working with a kernel esti-
mator of σ̂2 based on least squares residuals, Müller and Van Keilegom (2012)
show that under additional assumptions the resulting estimator is asymptoti-
cally equivalent to the oracle weighted least squares estimator. This generalizes
the work of Carroll (1982) who was the first to obtain such a result without
missing responses, i.e., in the case when δ is identically 1. Similar results
without missing responses were obtained by Müller and Stadtmüller (1987),
Robinson (1987) and Schick (1987) for various nonparametric estimators of σ2

under differing conditions.

Schick (2013) has shown that one can construct an estimator that is asymptot-
ically equivalent to the oracle weighted least squares estimator without con-
structing an estimator of the variance function σ2. He treated the case q = 1

with missing responses. He avoided estimation of the variance function σ2 by
working with a guided maximum empirical likelihood estimator associated with
an empirical likelihood with an increasing number of estimated constraints,

Sn(ϑ) = sup
{ n∏
j=1

nπj : π1 ≥ 0, . . . , πn ≥ 0,
n∑
j=1

πj = 1,

n∑
j=1

πjδj(Yj − ϑ>Zj)vrn(Gj)) = 0
}
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with

Gj =
1

N

n∑
i=1

δi1[Xi ≤ Xj ], j = 1, . . . , n,

rn a positive integers tending to infinity with n, and vr a function from [0, 1]

into Rr+1 for each positive integer r. His estimator maximizes the restric-
tion of Sn to the random ball centered at the least squares estimator of radius
C(log n/n)1/2 for some constant C,

θ̂S = arg max
n1/2‖ϑ−θ̂L‖≤C log1/2 n

Sn(ϑ).

He obtained the asymptotic equivalence of this estimator and the oracle weighted
least squares estimator (by establishing the expansion (1.1) with θ̂S in place of
θ̂W ) under a growth condition on rn and mild assumptions on the functions vr.
With U denoting the uniform distribution on [0,1], he required these functions
to satisfy the following conditions.

(C1) There are positive constants c0, c1, c2, c3 such that the inequalities

‖vr(x)‖2 ≤ c0r,

‖vr(x)− vr(y)‖2 ≤ c1r3|y − x|2,

c2 ≤
∫

(u>vr)
2 dU ≤ c3,

hold for all x and y in [0, 1] and all unit vectors u in Rr+1.

(C2) For every g in L2(U ),

inf
b∈Rr+1

∫
(b>vr − g)2 dU → 0 as r →∞.

Guided maximum likelihood estimation was introduced and studied by Peng
and Schick (2012) for a fixed number of constraints. As shown in Schick (2013)
possible choices for the function vr are

(a) vr = (1, ϕ1, . . . , ϕr)
> with

ϕk(x) =
√

2 cos(kπx), 0 ≤ x ≤ 1, k = 1, 2, . . . ,

(b) vr = (vr,0, . . . , vr,r)
> with

vr,i(x) = r1/2 max(0, 1− |rx− i|), i = 0, . . . , r, 0 ≤ x ≤ 1.
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The first choice consists of the first 1 + r elements of the trigonometric basis of
L2(U ). The components of the second choice form a basis of the linear splines
with knots at the points 0/r, . . . , r/r.

In many situations the conditional variance function can be modeled as a func-
tion of the mean response as expressed in the following assumption.

(A0) There is a measurable function τ from R into some compact subset of
(0,∞) such that

σ2(X) = τ2(θ>Z).

We now make this assumption and study the guided maximum likelihood esti-
mator

θ̂ = arg max
n1/2‖ϑ−θ̂∗‖≤C log1/2 n

Rn(ϑ) (1.2)

associated with the modified empirical likelihood

Rn(ϑ) = sup
{ n∏
j=1

nπj : π1 ≥ 0, . . . , πn ≥ 0,
n∑
j=1

πj = 1,

n∑
j=1

πjδj(Yj − ϑ>Zj)vrn(R̄j(θ̂∗)) = 0
}
, ϑ ∈ Rp,

which is obtained from Sn(ϑ) by replacing Gj by R̄j(θ̂∗). Here

R̄j(ϑ) =
1

N

n∑
i=1

δi1[ϑ>Zi ≤ ϑ>Zj ], ϑ ∈ Rp, j = 1, . . . , n,

and θ̂∗ is a discretized version of θ̂L which is obtained by matching θ̂L with the
closest point in the grid

{c(i1, . . . , ip)>/
√
n : i1, . . . , ip = . . . ,−2,−1, 0, 1, 2, . . . }

where c is a positive constant. We work with a discretized version to simplify
our proofs. Indeed, discretized estimators can be treated as non-stochastic se-
quences in the proofs. Discretization was introduced by Le Cam (1960) for
precisely this reason and has become a popular tool in the construction of effi-
cient estimators in semiparametric models, see Bickel (1982) and Schick (1986,
1987). We need the following assumptions.
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(A1) There is a neighborhood N of θ, a finite constant K and a positive α,
α ≤ 1, such that∣∣∣E[δ1[ϑ>Z ≤ y]]− E[δ1[θ>Z ≤ z]]

∣∣∣ ≤ K(‖ϑ− θ‖α + |y − z|α
)

holds for all ϑ ∈ N and all y, z ∈ R.

(A2) The matrix

H∗ = E
[ δ

τ2(θ>Z)
WW>

]
is positive definite with

W = ν(θ>Z) = E(Z|θ>Z, δ = 1).

We are ready to state our main result.

Theorem 1. Suppose (A0), (A1), (A2), (C1) and (C2) hold. Assume also that
the error variable ε has a finite fourth moment and rn satisfies r5n log n = o(n)

and r5n = o(nα). Then the guided maximum empirical likelihood estimator θ̂
defined in (1.2) satisfies the expansion

θ̂ = θ +
1

n

n∑
j=1

H−1∗
δjεj

τ2(θ>Zj)
ν(θ>Zj) + oP (n−1/2). (1.3)

Therefore n1/2(θ̂− θ) is asymptotically a centered multivariate normal random
vector with dispersion matrix H−1∗ .

The theorem shows that the new estimator is no longer equivalent to the oracle
weighted least squares estimator. Simulations in Section 2 show that the new
estimator can significantly outperform the complete case least squares estimator
θ̂L in certain situations, but may be worse in others.

A proof of the theorem is given in Section 4. A discussion of our assumption
and some preparatory results are in Section 3. The results of a simulation study
are in Section 2.

2. Simulations
In order to assess our method, we performed a small simulation study using
R. We compared several versions of our guided maximum likelihood estimator
with the least squares estimator (OLSE) and the oracle weighted least squares
estimator (WLSE). We took p = q = 2, θ = (1, 1)>, δ = 1, Z = m(X) = X ,
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X a bivariate normal random vector with mean vector (1,−2)> and diagonal
dispersion matrix with diagonal entries 1 and 4, and ε = τ(θ>X)ζ, with ζ
standard normal and independent of X . For this choice, assumption (A1) holds
with α = 1; see Remark 3 below.

We looked at four cases for τ , namely τ = τA, τ = τB , τ = τC and τ = τD,
where

τ2A(x) = 3 ∗ 1[x ≤ −1] + .2 ∗ 1[x > −1].

τ2B(x) = 0.1 + 2 ∗ exp(−π(x+ 1)2/2).

τ2C(x) = min{0.3 ∗ |x+ 1|+ 0.1, 10}.

and

τ2D(x) = sin(x) + 1.1.

We ran simulations for these choices of τ with sample sizes n = 100 and
n = 200, and 2000 repetitions. In the tables we report 100 times the simulated
mean square error for each estimator. The simulated mean square error for an
estimator θ̃ with 2000 repetitions is defined by

1

2000

2000∑
i=1

‖θ̃i − θ‖2

with θ̃i the result of the i-th repetition. It estimates E[‖θ̃ − θ‖2].
We write GT(r) for our estimator when using the trigonometric basis and rn =

r, and GS(r) for our estimator when using the spline basis and rn = r. Table 1
reports the results for OLSE, WLSE and GT(r) with r = 1, . . . , 5, while Table
2 reports the results for OLSE, WLSE and GS(r) with r = 1, . . . , 5. We used
the same sample to construct each of the twelve estimators. Thus the columns
OLSE and WLSE are the same for both tables.

We can see our proposed estimator performs better than the OLSE for the
choices τA and τB in all cases when r is at least 3, while for the choices τC
and τD is does perform worth. Also, the performance of our estimator is influ-
enced by the choice of r although the choice r = 4 performs quite will in all
cases. There seems little difference between the choice of bases.

IASSL ISSN -1391-4987 215



Anton Schick and Yilin Zhu

Table 2.1: Simulated Mean Square Errors with Trigonometric Basis

τ n OLSE WLSE GT(1) GT(2) GT(3) GT(4) GT(5)
τA 100 1.067 0.369 0.892 0.764 0.619 0.581 0.580
τA 200 0.528 0.177 0.454 0.394 0.321 0.300 0.298
τB 100 0.281 0.118 0.351 0.222 0.179 0.179 0.179
τB 200 0.137 0.058 0.161 0.100 0.086 0.086 0.086
τC 100 0.803 0.603 0.933 0.875 0.878 0.886 0.902
τC 200 0.393 0.299 0.436 0.409 0.402 0.403 0.409
τD 100 1.118 0.579 1.567 1.506 1.478 1.399 1.381
τD 200 0.543 0.269 0.712 0.679 0.664 0.621 0.614

Each entry is 100 times the simulated mean square error of the corresponding
estimator, for two sample sizes and two choices of τ .

Table 2.2: Simulated Mean Square Errors with Spline Basis

τ n OLSE WLSE GS(1) GS(2) GS(3) GS(4) GS(5)
τA 100 1.067 0.369 0.887 0.717 0.593 0.579 0.582
τA 200 0.528 0.177 0.451 0.370 0.305 0.299 0.298
τB 100 0.281 0.118 0.333 0.212 0.180 0.181 0.182
τB 200 0.137 0.058 0.154 0.098 0.086 0.087 0.087
τC 100 0.803 0.603 0.964 0.905 0.896 0.895 0.917
τC 200 0.393 0.299 0.450 0.422 0.407 0.406 0.412
τD 100 1.118 0.579 1.544 1.493 1.495 1.393 1.378
τD 200 0.543 0.269 0.706 0.678 0.671 0.620 0.605

Each entry is 100 times the simulated mean square error of the corresponding
estimator, for two sample sizes and two choices of τ .

3. Comments and Remarks
We begin with some comments on our assumptions, and then discuss implica-
tions of these assumptions.
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Remark 1. For α = 1, the requirements on rn are equivalent to r5n log n =

o(n), while for α < 1, they are equivalent to r5n = o(nα). For example, if α
equals 1/2, then we need r10n = o(n).

The next two remarks address assumption (A1).

Remark 2. Let F denote the distribution of θ>Z. We shall see that (A1) holds
if F is Hölder. For real numbers y and z and a vector ϑ in Rp, we set

J(y, z, ϑ) = |E[δ1[ϑ>Z ≤ y]]− E[δ1[θ>Z ≤ z]]|.

We derive the bound

J(y, z, ϑ) ≤ |F (z)− F (y)|+ F (y+B)− F (y−B) + P (‖ϑ− θ‖‖Z‖ > B)

valid for positive B. Indeed, for random variables S and T we have

1[S + T ≤ y]− 1[S ≤ z] = 1[S + T ≤ y]− 1[S ≤ y] + 1[S ≤ y]− 1[S ≤ z]

and

|1[S + T ≤ y]− 1[S ≤ y]| = 1[S + T ≤ y < S] + 1[S ≤ y < S + T ]

≤ 1[y − |T | < S ≤ y + |T |]
≤ 1[y −B < S ≤ y +B] + 1[|T | > B].

Applying this with S = θ>Z and T = (ϑ− θ)>Z, we obtain the inequality.

Now assume that F is Hölder with exponent κ, 0 < κ ≤ 1. Since F is bounded,
it is also Hölder for any exponent in the interval (0, κ). Using the Hölder prop-
erty of F , we derive the following results using the above inequality.

(i) If ‖Z‖ is bounded by say C∗, we take B = ‖ϑ− θ‖C∗ and obtain (A1) with
α = κ.

(ii) If ‖Z‖ has a finite moment of order ν ≥ 2, then we have

P (‖ϑ− θ‖‖Z‖ > B) ≤ ‖ϑ− θ‖νE[‖Z‖ν ]/Bν

and with B = ‖ϑ− θ‖β and β = ν/(κ+ ν)

J(y, z, ϑ) ≤ |F (y)− F (z)|+ 2L‖ϑ− θ‖κβ + E[‖Z‖ν ]‖ϑ− θ‖κβ,

where L is the Hölder constant. Since F is also Hölder with exponent κβ,
we obtain (A1) with α = κβ = κν/(κ + ν). Note that α increases with
ν and tends to κ as ν increases to infinity. For κ = 1 and ν = 2, we have
α = 2/3.
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Remark 3. Assume that Z has an elliptically contoured distribution condition-
ally given δ = 1. This means that given δ = 1, the random vector Z has the
same distribution as µ + Ση where µ is a vector in Rp, Σ is a positive definite
p × p matrix, and η is a spherically symmetric random vector, i.e., Qη has the
same distribution as η for each orthogonal p × p matrix Q. Then the random
variables {u>η : ‖u‖ = 1} have the same distribution function F . Thus we
derive

E[δ1[ϑ>Z ≤ y]] = E[δP (ϑ>Z ≤ y|δ = 1)]

= E[δ]P (ϑ>µ+ ϑ>Ση ≤ y)

= E[δ]F ((y − ϑ>µ)/‖Σϑ‖)

for every non-zero vector ϑ in Rp. It is now easy to see that (A1) holds with
α = 1 if F has a density f satisfying

sup
y∈R

(1 + |y|)f(y) <∞

and if θ is not the zero vector. This shows that in the setting of our simulations
(A1) holds with α = 1.

Remark 4. Let us briefly mention an example when (A2) fails to hold. Take
δ identical to 1 and Z = X = (X1, X2)

>, where X is a bivariate standard
normal random vector. Then, for θ = (1, 1)>, the conditional distribution of
X1 given θ>X = X1 + X2 is the same as that of X2 given X1 + X2, and
E[X1|X1 + X2] = E[X2|X1 + X2] = (X1 + X2)/2. Consequently (A2) is
not met in this case.

Let us now discuss implications of our assumptions and in the process derive
important quantities and results needed in the proof of the theorem. For ϑ ∈ Rp,
we letGϑ denote the conditional distribution function of ϑ>Z given δ = 1, i.e.,

Gϑ(s) = P (ϑ>Z ≤ s|δ = 1) =
E[δ1[ϑ>Z ≤ s]

E[δ]
, s ∈ R,

and set

Rj(ϑ) = Gϑ(ϑ>Zj), j = 1, . . . , n.

Then (A1) implies

|Rj(ϑ)−Rj(θ)| ≤
K‖ϑ− θ‖α

E[δ]
(1 + ‖Zj‖α), ϑ ∈ N ,
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and we have

E[δj(R̄j(ϑ)−Rj(ϑ))2|Xj , δ1, . . . , δn] ≤ δj
N

as the left hand side equals

δj
N2

(
E[(1−Rj(ϑ))2|Xj , δj = 1] +

n∑
i 6=j

δiE[Rj(ϑ)(1−Rj(ϑ))|Xj , δj = 1]
)
.

Thus, for every sequence θn such that n1/2(θn − θ) is bounded, we have

1

n

n∑
j=1

E[δj(R̄j(θn)−Rj(θ))2] = O(n−α). (3.1)

Remark 5. It follows from (A1) that Gθ is continuous. Thus, given δ = 1, the
random variable R = Gθ(θ

>Z) is uniformly distributed on [0, 1]. This will be
used in the next remark.

Remark 6. Let us now look at the dispersion matrix Vn of ζn = δεvrn(R) and
the covariance matrix An of ζn and ξ = δεW/σ2(X). We have

Vn = E[ζnζ
>
n ] = E[δε2vrn(R)v>rn(R)] = E[δσ2(X)vrn(R)v>rn(R)]

and

An = E[ζnξ
>] = E[

δε2

σ2(X)
vrn(R)W>] = E[δvrn(R)W>] = E[δvrn(R)Z>].

Since σ2 takes values in a closed subinterval [a, b] of (0,∞), we have

aE[δ(u>vrn(R))2] ≤ u>Vnu ≤ bE[δ(u>vrn(R))2]

and obtain from the third part of (C1) the inequality

ac2E[δ] ≤ inf
‖u‖=1

u>Vnu ≤ sup
‖u‖=1

u>Vnu ≤ bc3E[δ]. (3.2)

In view of the identity An = E[δvrn(R)W>], it follows from (A2) and the
properties of Vn that An is eventually of full rank p. Finally, using condition
(C2), one verifies as in Schick (2013) that

E[‖A>n V −1n ζn − ξ‖2 → 0
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and obtains

1√
n

n∑
j=1

A>n V
−1
n δjεjvrn(Rj) =

1√
n

n∑
j=1

δjεj
σ2(Xj)

ν(θ>Zj) + oP (1)

and the convergence
A>n V

−1
n An → H∗.

4. Proof of Theorem 1
Note that the random vector

Γn =
1√
n

n∑
j=1

δjεj
σ2(Xj)

Zj

is asymptotically normal with mean vector zero and dispersion matrix H . As
demonstrated in Peng and Schick (2012), the desired (1.1) now follows if one
shows that the local log-empirical likelihood ratio

Ln(t) = log
Rn(θ + n−1/2t)

Rn(θ)
, t ∈ Rp,

satisfies the expansion

sup
‖t‖≤2C log1/2 n

|Ln(t)− t>Γn + (1/2)t>Ht|
(1 + |t|)2

= oP (1). (4.1)

Thus we just need to prove (4.1). It suffices to prove the desired expansion with
θ̂∗ replaced by a sequence θn which satisfies n1/2(θn−θ) is bounded. Indeed, if
the result holds for each such sequence, it also holds for any discretized root-n
consistent estimator of θ such as θ̂∗.

The empirical likelihood that takes the above into consideration is

Rn(ϑ) = sup
{ n∏
j=1

nπj : π1 ≥ 0, . . . , πn ≥ 0,

n∑
j=1

πj = 1,

n∑
j=1

πjδj(Yj − ϑ>Zj)vrn(R̄nj) = 0
}

with R̄nj = R̄j(θn). Abbreviate Rj(θ) by Rj . From (3.1) and the second
inequality in (C1) we derive

1

n

n∑
j=1

E[δj‖vrn(R̄nj)− vrn(Rj)‖2] = O(r3nn
−α). (4.2)
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For t ∈ Rp, we set

Un,t =
1

n

n∑
j=1

δj

(
εj −

t>Zj√
n

)
vrn(R̄nj)

and

Vn,t =
1

n

n∑
j=1

δj

(
εj −

t>Zj√
n

)2
vrn(R̄nj)v

>
rn(R̄nj).

In addition, we introduce

Un =
1√
n

n∑
j=1

εjvrn(Rj)

Let Cn = 2C log1/2 n. As in the proof of Theorem 2 in Schick (2013), we
derive that (4.1) is implied by the following three statements.

sup
‖t‖≤Cn

‖Un,t − Un +Ant‖
1 + ‖t‖

= oP (r−1/2n ), (4.3)

sup
‖t‖≤Cn

sup
‖u‖=1

|u>Vn,tu− u>Vnu| = oP (1/rn), (4.4)

sup
‖t‖≤Cn

| − 2 log Rn(θ + n−1/2t)− U>n,tV−1n,tUn,t|
(1 + ‖t‖)2

= oP (1). (4.5)

Here An and Vn are as in Remark 6. These statements will be proved next.

Proof of (4.3). Let us set

Ãn =
1

n

n∑
j=1

δjvrn(R̄nj)Z
>
j and An =

1

n

n∑
j=1

δjvrn(Rj)Z
>
j .

One verifies

Un,t − Un +Ant = Un,0 − Un − (Ãn −An)t

and finds, by conditioning on δ1, X1, . . . , δn, Xn,

E[‖Un,0 − Un‖2] = E
[∥∥∥ 1√

n

n∑
j=1

δjεj(vrn(R̄nj)− vrn(Rj))
∥∥∥2]

=
1

n

n∑
j=1

E[δjε
2
j‖vrn(R̄nj)− vrn(Rj)‖2]

=
1

n

n∑
j=1

E[δjσ
2(Xj)‖vrn(R̄nj)− vrn(Rj)‖2].
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Since σ2 is bounded, (4.2) yields

E[‖Un,0 − Un‖2] = O(r3nn
−α) = o(1/r2n).

Thus, (4.3) follows if we verify ‖Ãn −An‖ = oP (r
−1/2
n ). We have

‖Ãn − An‖ ≤
1

n

n∑
j=1

δj‖(vrn(R̄nj)− vrn(Rj))Z
>
j ‖

=
1

n

n∑
j=1

δj‖vrn(R̄nj)− vrn(Rj)‖‖Zj‖.

Thus an application of the Cauchy–Schwarz inequality and (4.2) yield

‖Ãn − An‖ = OP ((r3nn
−α)1/2) = oP (1/rn).

Finally, we have

E[‖An −An‖2] ≤ E
[∥∥∥ 1

n

n∑
j=1

(δjvrn(Rj)Z
>
j − E[δjvrn(Rj)Z

>
j

∥∥∥2]
≤ 1

n
E[δ‖vrn(R)‖2‖Z‖2] ≤ c0rn

n
E[‖Z‖2].

Combining the above yields ‖Ãn −An‖ = oP (r−1n ).

Proof of (4.4). Note that Vn is the expected value of the random matrix

Vn =
1

n

n∑
j=1

δjε
2
jvrn(Rj)v

>
rn(Rj).

Thus we derive

E[‖Vn − Vn‖2] ≤
1

n
E[δε4‖vrn(R)‖4] ≤ c20r

2
n

n
E[δε4]

using the first inequality in (C1).

Let u be a unit vector in Rrn and t be a vector in Rp with ‖t‖ ≤ Cn. Then we
have

|u>Vnu− u>Vnu| = |u>(Vn − Vn)u| ≤ ‖Vn − V ‖ = Op(rnn
−1/2)

and

|u>Vntu− u>Vnu| ≤
1

n

n∑
j=1

δj

∣∣∣(εj − t>Zj√
n

)2
w2
n(R̄nj)− ε2jw2

n(Rj)
∣∣∣

≤Wn +
1

n

n∑
j=1

δj

(2Cn√
n
|εj |‖Zj‖+

C2
n

n
‖Zj‖2

)
c0rn
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with wn = u>vrn and

Wn =
1

n

n∑
j=1

δjε
2
j

∣∣w2
n(R̄nj)− w2

n(Rj)
∣∣.

Using the identity a2−b2 = (a−b)2+2b(a−b) and then the Cauchy–Schwarz
inequality we derive the bound

Wn ≤ Dn + (u>VnuDn)1/2 ≤ Dn + (bc3 + ‖Vn − Vn‖)1/2D1/2
n

with

Dn =
1

n

n∑
j=1

δjε
2
j (wn(R̄nj)−wn(Rj))

2 ≤ 1

n

n∑
j=1

δjε
2
j‖vrn(R̄nj)−vrn(Rj)‖2.

With the aid of (4.2) we derive E[Dn] = Op(r
3
nn
−α). The above show

sup
‖t‖≤Cn

sup
‖u‖=1

|u>Vn,tu− u>Vnu| = Op(Cnrnn
−1/2) +Op(r

3/2
n n−α/2)

which is the desired result as r5n = o(nα).

Proof of (4.5). From (3.2) and (4.4) we derive that

λn = inf
‖t‖≤Cn

inf
‖u‖=1

u>Vntu and Λn = sup
‖t‖≤Cn

sup
‖u‖=1

u>Vntu

satisfy

P (λn > ac2E[δ]/2)→ 1 and P (Λn < 2bc3E[δ])→ 1.

Since ε has a finite fourth moment and ‖Z‖ has a finite second moment, we
obtain the rates

Mn1 = max
1≤j≤n

|εj | = oP (n1/4) and Mn2 = max
1≤j≤n

|Zj | = oP (n1/2).

It is easy to verify the rate

sup
‖t‖≤Cn

‖Un −Ant‖
1 + ‖t‖

≤ ‖Un‖+ ‖An‖ = Op(r
1/2
n ).

From this and (4.3) we then obtain

Un,∗ = sup
‖t‖≤Cn

‖Un,t‖
1 + ‖t‖

= Op(r
1/2
n ).
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With

Sjt =
(
εj −

t>Zj√
n

)
vrn(R̄nj),

we derive

Mn = sup
‖t‖≤Cn

max
1≤j≤n

‖Sjt‖ ≤ (c0rn)1/2(Mn1+Cnn
−1/2Mn2) = oP (r1/2n n1/4),

Sn = sup
‖t‖≤Cn

∥∥∥ 1

n

n∑
j=1

Sjt

∥∥∥ ≤ 1 + Cn√
n

Un,∗ = Op(Cnr
1/2
n n−1/2),

Tn = sup
‖t‖≤Cn

1

n

n∑
j=1

‖Sjt‖4 ≤
1

n

n∑
j=1

8c20r
2
n

(
|εj |4 +

C4
nM

2
n2

n2
‖Zj‖2

)
= Op(r

2
n).

The above yield

P (λn − 5MnSn > ac2E[δ]/4)→ 1.

Thus the event {λn > 5MnSn} has probability tending to 1. On this event, we
obtain as in Schick (2013) that the left-hand side of (4.5) is bounded by

U2
n,∗

[
Sn(ΛnTn)1/2

(λn −MnSn)3
+

4Λ2
nS

2
nTn

λ2n(λn −MnSn)4

]
,

which is of orderOP (Cnr
5/2
n n−1/2+C2

nr
4
n/n) = oP (1). This gives the desired

result (4.5).
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